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The bulk motion of a granular material affects its apparent thermal as well as its
apparent mechanical properties. This paper presents the simultaneous measurements
of the apparent viscosity and thermal conductivity for a dry granular material
undergoing shear in an annular shear cell. Both properties are seen to vary linearly
with the shear rate. As such, it can be argued that both the apparent conductivity
and viscosity are proportional to the square root of the granular temperature in
exactly the same way as the kinetic theory of gases predicts that the conductivity
and viscosity of a perfect gas vary as the square root of the thermodynamic
temperature. Thus, analogies can be drawn between the mechanical and thermal
behaviour of a granular flow that share much with similar —a.k.a. Reynolds —
analogies for both laminar and turbulent flows of simple fluids. However, the results
do indicate fundamental differences in the internal transport of heat and momentum.
In particular, heat may only be transmitted by the streaming motion of the particles,
while momentum may also be exchanged during interparticle collisions.

1. Introduction

‘Reynolds analogy’ for fluids is a term that is commonly used to describe
relationships between their mechanical behaviour —for example the shear force
exerted on a surface — and their thermal behaviour — for example the heat transfer
from that surface. Such relationships exist because similar mechanisms govern the
microscopic transport of both properties internal to the material. On a molecular
level, the mechanism that drives the transport of both quantities is the random
motion of the molecules which is characterized by the thermodynamic temperature.
The macroscopic manifestations of this internal transport are the viscosity and
thermal conductivity of the material. Similarly, both heat and momentum are
carried by the eddies that form within a turbulent fluid, leading to the so-called
‘eddy’ viscosity and thermal conductivity. (It was in this context that Reynolds
1874 first proposed the analogy.) Given such strong relationships between the
internal, microscopic transport of both quantities, it should not be surprising to find
relationships between the resulting macroscopic surface skin friction and heat
transfer.

A rapidly sheared granular material has much in common with both molecular and
turbulent transport. There, collisions, induced by the shear flow, induce random
motions of the particles that strongly invoke the image of the thermalized motion of
molecules in the kinetic theory of gases. The image is so strong that the energy
associated with the random movements is characterized as a ‘granular temperature’.
This has given rise to a school of thought known as rapid granular flow theory (see
the review by Campbell 1990), which tries to understand the mechanics of rapidly
sheared granular materials based largely on ideas derived from kinetic theory. But
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unlike a real thermodynamic material, the collisions between macroscopic solid
particles are inelastic. As a result, the granular temperature cannot be self-
sustaining, but must be continually supplied with energy from the motion of the bulk
material. Thus, like the eddies in a turbulent fluid, the granular temperature is a
property of the granular flow and not a property of the granular material. And, like
both the thermodynamic temperature and fluid turbulence, the random particle
motions reflected in the granular temperature can induce the transport of both heat
and momentum, leading one to expect that some relationship must exist between the
macroscopic transport properties of both.

The literature contains several precedents for such a conclusion. For example,
Patton, Sabersky & Brennen (1986) measured the friction and the heat transfer
between a dry granular material and a flat plate embedded in the bottom of an
inclined chute flow. They found that, as for a fluid flow, a simple relationship existed
between the friction coefficient and Stanton number even though, individually, their
behaviour is quite complex. A much closer relationship exists for suspensions. Leal
(1973) analysed the apparent conductivity of a dilute suspension of neutrally
buoyant spherical drops in the limit of low particle Reynolds (£e) and Péclet (Pe)
numbers in a simple shear flow. The analysis assumed that the imposed velocity and
temperature gradients both point in the same direction. In such a case, as the bulk
shear motion is perpendicular to the temperature gradient, it can have no direct
effect on the heat or momentum transport, so that any change in the thermal
conductivity or viscosity must come from the perturbation to the fluid motion
induced by the presence of the particle, or, perhaps, from the shear-induced rotation
of the particle itself. Leal calculated that the shear flow enhanced the bulk thermal
conductivity proportional to the 3 power of the shear rate, a conclusion which was
confirmed experimentally by Chung & Leal (1982). A similar analysis for the
apparent viscosity by Lin, Peery & Schowalter (1970) showed the same £ power law
dependence of the apparent viscosity on the shear rate, again indicating a close
connection between the internal mechanisms of heat and momentum transport.

But for macroscopic materials it is possible that the mechanisms that lead to heat
and momentum transport may become uncoupled. This is evident in the work of Nir
& Acrivos (1976) who studied the effective thermal conductivity in the limit of low
Reynolds number but large Péclet number (indicating a large-Prandtl-number fluid).
In such a case, the mechanisms of momentum transport are unchanged from the case
studied by Lin et al. (1970), but the heat transport is confined to a thin boundary
layer about a closed streamline pattern that forms around the particle. In such a
case, the conductivity is only weakly dependent on shear rate and varies proportional
to Pe'/1t. Here, the heat and momentum transport become uncoupled as the material
properties dictate that the major players in the heat transport make only a minor
contribution to the momentum transport; all of the heat transport occurs within the
interstitial fluid and the particle only has an influence because of the perturbation it
produces within the pattern of fluid flow. This has no direct analogue for dry granular
flows as, there, the thermal properties of the fluid (conductivity, heat capacity, etc.)
are insignificant compared to that of the solid, and the motion of the fluid induces
an insignificant amount of heat transport compared to that induced by the motion
of particles. However, there still are mechanisms that contribute either to the
transport of heat or to the transport of momentum without affecting the transport
of the other quantity. One example, on the heat transfer side, is particle rotation.
Campbell (1989) showed that, in a dry granular flow, the bulk shear motion induces
a particle rotation rate of the order of one-half the shear rate — much as is observed
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for particles in a fluid shear flow. By itself, the rotation of the particle does not
transport linear momentum and thus cannot contribute directly to the stress.
However, it does induce a convective transport of heat as a rotating particle within
a temperature gradient will absorb heat on the hot side and release it on the cold side.
The case of a particle rotating in a stationary medium has been studied by Wang,
Sadhal & Campbell (1989), who showed that the major effect of the particle rotation
is to increase the apparent conductivity of the particle relative to that of the fluid;
thus, the maximum thermal conductivity of an assembly of rotating particles can be
no larger than that of an assembly of stationary particles whose conductivity is
infinite compared to that of the medium within which they are embedded. Thus, for
a dry granular flow, as the conductivity of the solid phase is already much larger than
that of the interstitial fluid, the amount of additional heat transported due to the
particle rotation is insignificant.

The current study is carried out to experimentally measure the apparent thermal
conductivity and the apparent viscosity of a dense dry particulate material as it
undergoes shear in an annular shear cell. Here the particle concentration, particle
size and shear rate are large — indicating large Re and Pe — relative to the suspension
studies referred to above ; as such, while there may still be a relationship between the
thermal conductivity and viscosity, one should not be surprised that the low- and
high-Re studies will show significantly different results. In fact, such a difference is
already apparent in extensive studies of the mechanical behaviour of such systems,
both by direct experimentation (Bagnold 1954; Hanes & Inman 1985; Savage &
Sayed 1983) and by computer simulation (Campbell 1982, 1989; Campbell &
Brennen 1985 ; Campbell & Gong 1986; Walton & Braun 19864, b) (there have been
no previous measurements of the thermal conductivity). The pioneering work on the
constitutive behaviour of momentum transfer for granular materials was Bagnold’s
(1954) study of the shear flows of neutrally buoyant spherical wax particles
suspended in a glycerine—water—alcohol solution. He showed that, at low shear rates,
the shearing mixture behaves like a Newtonian fluid with a corrected viscosity. At
large shear rates, however, the presence of the particles plays a more important role;
there, the composite ceases to behave like a Newtonian fluid and the stresses, 7, vary
as the square of the bulk velocity gradient according to the rule:

7= p, DAf) V" (L.1)

where p, is the density of the solid particles, D, the particle diameter, v the solid
fraction defined as the fraction of the unit volume occupied by the solid phase, y is
the bulk shear rate and f(v) a function of the solid fraction v (a dimensionless density
equal to the fraction of volume occupied by solid material). The same conclusion may
be derived by dimensional analysis. The quadratic dependence of the stresses on the
shear rate described by (1.1) has been confirmed by all of the experiments and
computer simulation studies referred to above. The implication of this result is that
the apparent viscosity — i.e. the shear stress divided by the shear rate —varies directly
proportional to the shear rate.

2. Experimental apparatus

The apparatus used to measure the apparent conductivity is shown in figure 1. It
is an annular shear cell similar to those used by Hanes & Inman (1985) and Savage
& Sayed (1983) for their studies of the mechanical behaviour of sheared granular
materials — although, here, the basic design has been modified so that it may
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FicUurE 1. Schematic of the shear cell.

simultaneously measure the apparent conductivity. It consists of a moving lower
disk and a stationary upper disk coaxially mounted on a central shaft. The lower disk
is made of nylon and is 610 mm (24 in.) in diameter and 76 mm (3 in.) thick, and is
mounted on a radial bearing assembly along the shaft which allows the disk to rotate
freely. An annular trough of 584 mm (23 in.) in outside diameter, 483 mm (19 in.) in
inside diameter and 51 mm (2 in.) deep is cut into the disk to hold the heater
assembly, thermocouples and test materials. The disk is belt-driven by a 5 HP AC
motor whose speed is controlled by a variable speed inverter. All of the cell’s
construction materials must be extremely temperature tolerant as all of the
mechanical energy (up to the full 5 HP of the drive motor) is eventually dissipated
away to heat and the internal temperatures may exceed 100 °C. Yet the use of metals
(an obvious choice because of their resistance to abrasion and temperature) is
inadvisable for the construction of the lower disk as their large thermal conductivity,
relative to the test material, might bias the measurement. After several attempts, the
lower disk was eventually constructed of nylon as it is able to withstand larger
temperatures than many other commonly available plastics, while possessing a
thermal conductivity an order of magnitude smaller than those of metals.

The upper stationary disk is made of aluminium and machined to fit closely into



Reynolds analogy for a shearing granular material 531

the trough of the lower disk without directly contacting the trough walls. A cooling
water channel is recessed right behind the surface to keep the top wall temperature
constant during the heat transfer experiments. The cooling water is supplied by a
Fisher Scientific constant-temperature bath. The disk is mounted on a radial-linear
bearing assembly to allow free rotational and axial movement. However, rotation of
the disk is prevented by a cable connected to a load cell which measures the shear
force exerted on the top surface by the material. The axial movement of the top disk
is restrained by a spring assembly which provides a normal force to the sheared
mixture in the trough; the balance between the spring force and the shear-induced
dispersive stresses controls the height of the shear gap between upper and lower
disks. The gap height is monitored by a LVDT gauge head. Both the top and bottom
shearing surfaces are roughened by gluing on solid particles spaced several diameters
apart so that good mechanical contact is ensured between the test material and the
shearing surfaces.

The heater assembly, shown in figure 2, consists of six separate heaters which are
mounted behind the roughened plate that covers the trough bottom. The primary
heater is located at top centre and is sandwiched by two guard heaters to prevent any
heat flux through the metal plate in the direction parallel to the plate. A single ring-
shaped bottom guard heater which spans the whole gap width is placed, behind a
plastic spacer, at the back of the primary heater. Finally, two additional guard
heaters are used to block the heat path through the sides of the plastic spacer and
the roughened metal plate. To ensure that the outgoing energy from the primary
heater goes nowhere but upward to the test material, the temperatures of all five
guard heaters are kept the same as the temperature of the primary heater.

The measurements of temperature are made via T-type thermocouples whose
positions are marked in figure 2. Three thermocouples are placed on the primary
heater in order to detect any temperature gradient along its width in the radial
direction. Three thermocouples are placed along each of the shearing walls and four
thermocouples along the vertical sidewalls of the channel to monitor the surface
temperature distribution. A total of 19 thermocouples are mounted on the rotating
disk, and along with twelve leads from the heater assembly, are connected to the
stationary world through two slip rings assemblies. An additional three thermo-
couples are attached to the stationary upper surface. For the conductivity
calculation, the temperature distribution along the two roughened boundaries is
determined by three thermocouples mounted flush with the outer edges of the
roughened particles.

One novel feature of this device is that the shear cell is mounted inside a rotatable
cage to change the orientation of the shear zone with respect to gravity. In all
previous experiments that employed similar apparatuses, including Hanes & Inman
(1985) and Savage & Sayed (1984), the orientation of the shear cell was fixed so that
gravity worked in the same direction as the velocity gradient. Both investigators
observed that, at low bulk densities, the material would gather near the trough
bottom in a stagnant layer and only that portion of the material above that layer
would actually shear. Consequently, they were only able to operate the experiments
in a fully shearing mode at very high solid concentrations. When the present
apparatus is rotated so that the shaft is parallel to the ground, gravity works
perpendicular to the velocity gradient, preventing the stagnant zone formation (at
least that part due to gravitational effects) and permitting operation at solid
concentrations as low as 5% by volume. The stress results at low concentrations
have been shown by Campbell (1986, 1990) to agree with computer simulation results
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Ficure 2. Schematic of the heater assembly and thermocouple placement.

Diameter Density Specific heat

Material D, (mm) p,(kgm®) ¢, (J kg K1)
Glass beads 1.9 2500 0.74
Steel shot 2.2 7300 0.42
Glass beads 3.0 2500 0.74
Glass beads 3.75 2500 0.74

TaBLE 1. Material properties

and are the only measurements at low concentrations that do so — indicating that
this is a valid method of making these measurements. In addition, the gravitational
orientation varies about the circumference so that its net contribution averages to
zero over a complete rotation. However, despite very successful operation at small
concentrations, problems were encountered with the shear cell operated in this
orientation at large concentrations. The problems appeared as vigorous oscillation of
the top disk for v > 0.35. Similar oscillations are observed, though to a smaller
degree, when the device was rotated into its more familiar orientation with the shaft
vertical and may also be found described in the papers by Savage & Sayed and Hanes
& Inman. It is speculated that at high densities, particles may percolate across the
channel depth forming columns that span the gap width; as the top surface tries to
move over such a column it may be temporarily lifted, as on a pole vault, generating
the observed oscillation. Apparently, with the shear cell rotated so that the shaft is
horizontal, there is sufficient circumferential variation in the solid concentration to
promote such events (at such large concentrations, only a small perturbation would
be required). One would expect that these pole vaults could transmit a force directly
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from the top to the bottom disk, which might bias the force measurement and it is
unclear what the consequences would be for the conductivity measurement. To
minimize this problem, the shear cell is reoriented with the shaft in the vertical
direction (so that gravity works parallel to the velocity gradient), whenever the
concentration is larger than v = 0.35. Tests were made to assure that the orientation
change did not bias either the conductivity or viscosity measurements.

Even though changing the orientation eliminates the gravity-induced formation of
stagnant zones along the bottom of the channel, it is still possible for centrifugal
forces to force stagnant regions to form — especially in the outside lower corners of
the trough. To ensure that shearing occurs across the whole shear depth of the
trough, tests are undertaken to determine the depth of the shearing for various
values of solid concentration and shear rate. To accomplish this, the outer wall of the
trough was covered with a layer of chalk dust. After shearing, the particles are
carefully unloaded and any stagnant regions could be seen as areas where the chalk
dust was undisturbed. In this way, we found that the maximum gap spacing for
which no stagnant zone could be observed was about 8.5 particle diameters. As a
smaller shear gap presented the danger of significant influence of the bounding walls,
this spacing was used throughout the experiments described here.

Although the use of this type of device has become quite ubiquitous for granular
material testing, several problems with the measurements have made themselves
apparent in recent years. The most obvious problems arise from the character of the
roughed boundaries. This was first noted by Hanes & Inman (1985) who performed
experiments with a shear cell that was identical, in nearly every respect, to that used
by Savage & Sayed (1984), except in the way that the shearing boundaries were
prepared. Savage & Sayed roughened their boundaries by attaching coarse sandpaper
to the shearing surfaces, while Hanes & Inman roughened theirs by gluing particles
of the test material to the surfaces. Surprisingly, tests on nearly identical materials
produced results that differed by a factor of up to three. Later Craig, Buckholtz &
Domoto (1987) showed that the test material itself had less effect on the stress
measurements than the way that the boundaries were prepared. The boundaries used
in the current study were prepared by individually gluing particles spaced several
diameters apart; the computer simulation results of Campbell & Gong (1987)
indicate that this should provide the roughest possible boundaries, assuring good
mechanical contact between the driving boundaries and the test material. In
addition, Loffelmann (1989) made measurements through clear sidewalls of his shear
cell and found that the generated shear rate was not uniform. Consequently, it
appears that measurements made in this type of shear cell, like many rheological
measurements, are device dependent and may not be quantifiably related to the
properties of a material undergoing an ideal simple shearing motion.

The choice of possible test materials was extremely limited, both by constraints on
size and ability to withstand the large temperatures that are generated by
mechanical dissipation within the material. The maximum sizes of the particles are
somewhat restricted by the maximum gap width supportable by the experimental
apparatus. On the low end, the size of the particles is limited by the clearances
between the stationary upper surface and the walls of the annular trough. Although
originally machined to within 0.25 mm, the gap expands as the material heats until
it exceeds 1 mm. This limits the size of test materials to be significantly larger than
1 mm. Furthermore, plastics are eliminated as candidates since the temperatures
within the shear gap can reach 100 °C or higher. The final choices were steel shot and
various sizes of glass beads whose physical properties are listed in table 1.
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Further details about the design, construction and use of this apparatus, may be
found in Wang (1991).

3. Experimental procedure

A typical experiment starts with a known quantity of material which is loaded into
the trough in the lower disk and preheated to the temperatures that are anticipated
in the experiment. The upper disk is then lowered and the orientation of the shear
cell is set according to the criteria discussed in §2. The motor is started and the
normal force spring is adjusted to keep constant wall separation. The shear stress,
electrical power supplied to the primary heater, and the temperatures on all four
bounding walls of the test region are all monitored to determine when the system
reaches an equilibrium state. This process usually takes one hour, but in some cases
it could take up to three hours. Many problems arose from the need to perform the
experiment over such long periods of time within the highly abrasive environment of
a shearing granular material.

To balance the heaters, the temperature of the primary heater is set and the power
applied to the other heaters is varied until all the temperatures, measured by the
appropriate thermocouples, match. Looking at figure 2, one will notice that there are
three thermocouples on the primary heater, thermocouples near the outer edges of
the side guard heaters and no thermocouples on the wall guard heaters. The power
input to the side guard heaters was set so that the readings from the three
thermocouples along the primary heater were the same. This assured that there were
no temperature gradients along the surface of the primary heater that would drive
heat losses in that direction. The temperature of the wall guard heaters were then set
to balance the temperature of the side guard heaters.

The greatest problem arises from the abrasive wear on the roughness elements
attached to the shearing surfaces. The wear makes itself apparent as a decrease in the
shear stress, indicating that there may be significant slip on the shearing surfaces.
Clearly, the higher the shear rate imposed on the sample and the longer the test
period, the greater the damage that occurs to the roughened surfaces. Throughout
this study, the experiment was stopped and the roughening particles reglued
whenever a significant change in the stress was detected. At solid fractions higher
than 0.40, the damage to the roughened surfaces occurred so rapidly that repair was
required after each data point. As the repair requires that the experiment be shut
down for a day for the glue to cure, it took a long time to perform the experiments
described herein.

4. Calculation of the apparent thermal conductivity

The first step in finding the apparent thermal conductivity was to determine the
temperature field, which is calculated assuming homogeneous thermal properties for
the material. Afterwards, the conductivity may be easily determined from the heat
supplied by the primary heater and the temperature gradient at the wall. However,
for the case studied here, there are two factors that complicate such a calculation.
The first problem arises because the annular region is nearly square in cross-section
and significant amounts of heat may be lost through the sidewalls, resulting in a two-
dimensional temperature field. In addition, the shearing process dissipates a great
deal of heat and this must be taken into account in the calculation of the temperature
field. Here, we make the assumption that the heat dissipation is uniformly
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distributed throughout the sample. (This is the most questionable assumption in the
analysis. However, temperatures do not vary strongly along the top and bottom
plates, indicating that the dissipation is, indeed, fairly uniform.) The total dissipation
must equal the total work performed on the sample and is equal to SU, where S is
the total shear force measured by the shear force transducer and U is the velocity of
the lower plate. With these ideas in mind, the appropriate equation from which to
find the temperature is

(62T azT) +SU

o + o V= 0, (4.1)
where k is the apparent thermal conductivity of the shearing mixture, 7' is the
temperature, and V the total volume of the shearing region. This calculation is done
on a cross-section of the test region that is illustrated in figure 3. Here, « is the
coordinate parallel to the roughened plates and varies between 0 and L, where L is
the width of the annulus; y is the coordinate in the shear direction and varies
between 0 and H, where H is the height of the shear gap. Equation (4.1) is to be
solved subject to the boundary conditions, which are obtained by taking quadratic
fits to the temperatures measured along the four walls:

T(x,0) =c,2®+b,z+a, at y=0, (4.2)
T, y) = c,y*+b,y+a, at x=0, (4.3)
T(x,H) =cy2®+bx +a, at y=H, (4.4)
T(L,y) =c,y,+b,y+a, at xz=1L, (4.5)

with a,;, b, ¢; being the coefficients of the quadratic fits to the temperature
measurements on the boundaries. (On the top and bottom boundaries, the
temperature measurement was made at the top of the roughness elements.) Now
there are four thermocouples mounted on the sidewalls in the y-direction. Throughout
these experiments, the gap H is varied to maintain a fixed value of H/D,. Thus, for
smaller particles, the fourth thermocouple lies outside the measurement volume and
is ignored in the analysis. When all four thermocouples are within the volume, the
quadratic fit is made by choosing three of the four available measurements.
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Equation (4.1) is readily solved with the boundary conditions (4.2)-(4.5) by a
standard separation-of-variables technique to obtain

sinh nny/L sinhnn(H—y)/L

sinhnnH/L*" " sinhnnH/L T
® (sinh nnz/H _ZSUHz(l—(—l)")]
ny \sinhnrl/H Vi(nm)?

inhnn(L —x)/H 28UH*(1—(—1)™) |, 2SUH*(1 —(—1)")] .
sinh n(L, —z)/ [4_ (1= ( >)]+ i >>}Slmy/H,

Tlx,y) = Z

=1

] sinnnx/L

sinhnnl/H Vi(nr)?
(4.6)
2 . ny 46, L*
where 771=E[‘11_(C1L +b, L+a)(—1)")— ) [1—(—1)"],
2 4
Ty = —[a,— (0, H*+b, H+a2>(—1)"]—(“2 s (=1,
2 4c, L?
Ta = la— €L+ by Lt ag)(— )] =g (L= (=17,
2 4
o= o= 0y HP b, H o 0~ 1))~ ),,[ — (1),

Note that £ is still an unknown but may be determined by realizing that the material
must absorb the heat supplied by the primary heater using the temperature gradient
given by the above solution, i.e.

a7 Quwan

T _Cwan <z<i, :

%y A,k for Li<x 2 (4.7)
where (L,—L,) is the width and 4, the surface area of the primary heater and Q,,,,
is the heat it supplies. Equations (4.6) and (4.7) may then be solved for the
conductivity, &, yielding

4SUH* i cosh nnL,/H — cosh thl/H(l — (- 1)")
|4

n=1 sinhnrnL/H (nm)®
_2SUH(L2_L1) % 1_(_1)n_Qwall (Lz—L1)
k= 4 a1 (mm)? 4,
5 M3 M
L,/L— L,/L
Ej (smhnnH/L tanhnnH/L) (cosnnl,/L—cosnnL,/L)
& coshnnl,/H—coshnnl,/H
* n§=:1 sinh nrL/H (2474
(4.8)

Note that the above analysis assumes that the thermal conductivity is a scalar,
which is clearly a questionable assumption. For example, Wang et al. (1989) have
indicated that this is not the case for rotating particles. Furthermore, Campbell
(1989) shows that the granular temperature is anisotropic, which, further indicates
that the conductivity is not a scalar. However, despite the difficulty in solving the
two-dimensional problem, the results never differ by as much as the thickness of a
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data point from assuming one-dimensional conduction. This indicates minimal heat
conduction in the z-direction. As symmetry dictates that there can be no conduction
in the direction of flow, one can be reasonably certain that the above yields a
reasonably accurate measure of the heat conduction in the y-direction.

5. Results and discussion

Results of the apparent thermal conductivity and the apparent viscosity for
3.0 mm glass beads are plotted in figures 4 (a) and 4 (b) as a function of shear rate for
various values of solid fraction, v. At any given value of v, both vary linearly with
the shear rate. This immediately demonstrates a relationship between the two
quantities and indicates that they must have similar micromechanical under-
pinnings. Even more interesting is that both theoretical analysis and computer
simulation have shown that, in a simple shear flow, the granular temperature varies
as the square of the shear rate (see, for example, Campbell & Brennen 1985 and Lun
et al. 1984). The same conclusion might also be drawn by simple dimensional analysis.
Thus, as both the apparent thermal conductivity and the viscosity vary directly
proportionally to the shear rate, they vary proportionally to the square root of the
granular temperature — just as kinetic theory predicts that viscosity of a gas varies
with the square root of the thermodynamic temperature. This indicates that the
granular temperature governs the internal transport of both heat and momentum in
a rapid granular flow.

However, the comparison between figures 4(a) and 4(b) also demonstrates a
fundamental difference between the transport of heat and momentum. The slope of
the apparent conductivity in figure 4 (a) decreases with increasing solid fraction, and,
at the largest solid fractions, the conductivity becomes almost independent of shear
rate. Exactly the opposite behaviour is observed for the apparent viscosity shown in
figure 4(b) in which the slopes steadily increase with solid fraction. This indicates
that differences exist in the internal mechanisms that lead to the transport of heat
and momentum (although, whatever the mechanism, it must still increase the
transport rate proportional to the shear rate and consequently proportional to the
square root of the granular temperature). Now, the internal transport of momentum
is fairly well understood to occur in a combination of two modes. The collisional
mode accounts for the momentum that is transferred almost instantaneously
between the centres of particles during a collision and the streaming mode describes
the properties carried by particles as they follow their random walk through the bulk
material. Obviously, the collisional mode dominates at dense packings where
collisions are frequent and the streaming mode prevails at dilute packings where
particles travel great distances between collisions. Note that, as the granular
temperature controls both the speed at which the particles follow their random walk
and the strength and frequency of collisions, it, therefore, controls the overall
transport rate regardless of the transport mode. Now it is clear that heat, as well as
momentum, can be transported in the streaming mode; i.e. as a particle follows its
random walk through the material, it carries its heat as well as its momentum with
it. But heat transfer is a relatively slow process and it is unlikely that any significant
amount of heat will be transferred between particles during the brief duration of a
collision. (This intuitive notion is confirmed by the analysis of Sun & Chen 1988).
Consequently, there is no analogue to the collisional mode in the internal mechanisms
of thermal transport and it is reasonable to expect that the streaming mode is the
dominant heat transfer mechanism within a rapidly sheared material.
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functions of shear rate for 3.0 mm glass beads.
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Fiaurg 6. (a) The apparent thermal conductivity k and (b) the apparent shear viscosity u as
functions of shear rate for 3.75 mm glass beads.

The dominance of the streaming mode of heat transport accounts for the difference
in the behaviour of the viscosity and thermal conductivity shown in figure 4. At large
concentrations, the collision rate will be large, but the movement of particles is very
restricted. Consequently, one anticipates a large degree of momentum transport in
the collisional mode, but a reduced degree of transport of both momentum and heat
in the streaming mode. The former is apparent in the increase of the slope of the
viscosity lines with concentration in figure 4(b). However, the corresponding
restriction of particle movement reduces the effectiveness of the streaming
component. Regardless of the magnitude of the granular temperature (i.e. the
magnitude of the shear rate) there will be no streaming momentum transport if the
particles cannot move. Consequently, the larger the solid concentration, the smaller
the shear-induced augmentation of the thermal conductivity, and, at the largest
concentrations, the particles are essentially locked in position and the shear rate has
almost no effect on the thermal conductivity. This process may be clearly seen in
figure 4 (a). Hunt & Hsiau (1990) has performed a theoretical analysis based on this
same physical picture and predicts qualitatively similar results.

To check the scaling of the thermal conductivity, measurements were made for
two other sizes of glass beads, 1.9 mm and 3.75 mm in diameter, and for steel shot of
2.2 mm in diameter. The results of the apparent thermal conductivity and the
corresponding apparent shear viscosity measurements are shown in figures 5-7 and
display much the same behaviour as the 3.0 mm glass beads shown in figure 4. As
the apparent conductivities are shown to vary linearly with the shear rate for each
material, density, and particle size, they can be fitted by a least squares fit into the
form

k=ko+bk%. (5.1)
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F1GURE 7.(a) The apparent thermal conductivity % and (b) the apparent shear viscosity u as
functions of shear rate for 2.2 mm steel shot.
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beads; ¢, 3.75 mm glass beads.

The values of the constant, k,, are plotted in figure 8. Apparently, k, has
questionable physical significance; in particular, it does not represent the
conductivity of the test material in the limit of zero shear rate and, for some sets of
the materials studied, even takes on negative values at the smaller solid fractions.
Furthermore, at larger concentrations, k,, takes values that are several times
those that are predicted by packed-bed correlations, such as those discussed in
Xavier & Davidson (1985). However, for each material, k, increases with solid
fraction, indicating that it may still reflect the increase in apparent conductivity of
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a static material as the solid fraction is increased. This might indicate that the
relationship between the thermal conductivity and the shear rate is not valid down
to zero shear rates. Such behaviour should not be surprising as the concept of a
granular temperature, so important to the physical discussion presented above, is
only appropriate for shear rates that are large enough that the stresses applied to the
bulk material can be supported by the inertia of the particles (in much the same way
as the pressure of a hard-sphere gas is supported by the inertia of the molecules). At
small shear rates, the bulk material behaves more like a solid than a fluid and it is
impossible to induce a uniform shear rate on the material. Instead, most of the
material will not deform and relative motion between particles will only be evident
on thin slip lines called shear bands. Under such conditions, one would be surprised
if the same behaviour was apparent in the thermal conductivity at low values of
shear rate as at high shear rates.

However, the diffuse nature of the ky(v) data may be simply due to extrapolation
errors. All of the data are taken at large shear rates (90-270s™') and the
extrapolation of the curve fits down to zero shear rate is bound to introduce
significant numerical errors. In itself, this may explain the scatter in the data and the
strange appearance of negative values of k,.

Since the principal internal mechanism of heat transport is by the streaming mode,
i.e. the heat carried by the particles as they follow their random paths through the
bulk material, one expects that the apparent conductivity should scale with the heat
capacity of the particle and thus be proportional to p, c,. As the thermal conductivity
scales with the shear rate, U/H, it follows then that the augmentation of the
apparent conductivity is proportional to p,c,(U/H), which bears the units of the
thermal conductivity multiplied by (length)™2. As the particle diameter D, is the only
reasonable choice for the characteristic lengthscale of microscopic transport
processes, an appropriate dimensionless form of the thermal conductivity is

k—k,
Py D3(U/H)’

which dimensional analysis indicates can only be a function of the solid fraction v.
The resulting non-dimensional conductivity enhancement for all three sizes of glass
beads and steel shot, is plotted in figure 9 as a function of the solid fraction » and,
encouragingly, all of the data collapse onto a single curve. It should be pointed out
that the success of this collapse is, in part, because the steel and glass beads have
nearly the same coefficients of restitution (measured in drop tests to be about 0.8 and
0.75 respectively) and thus dissipate granular temperature at nearly the same rate.
As a consequence, both materials will generate nearly the same granular temperature
at the same shear rate. If the generated granular temperatures were significantly
different, the internal transport rates would simultaneously reflect the difference in
the granular temperature and the difference in the specific heat of the particles and
a scaling as simple as (5.2) would not be possible.

An interesting feature of this curve is that it is nearly constant over a wide range
of the smaller solid fractions and only begins to drop off at the largest values of v.
While this may seem surprising at first, it has a direct analogy in the kinetic theory
of gases in which the thermal conductivity of a perfect gas is found to be independent
of the density. This occurs because the conductivity is a product of the number
density of heat carriers and the mean free path over which they travel. Increasing the
density increases the number of carriers of heat, but, simultaneously, decreases the
mean free path. At small concentrations, the mean free path is inversely proportional

(56.2)
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F1GURE 9. (a) Dimensionless conductivity augmentation as a function of solid fraction v.
() The corresponding dimensionless viscosity augmentation. Symbols as figure 8.

to the number density of carriers, so that their product and, consequently, the
resulting thermal conductivity, is independent of concentration. A similar situation
seems to be at work for the granular material studied here, even though a direct
analogy cannot be made as there is no way to ensure that the granular temperature,
which governs the transport rate, is independent of concentration in this small-v
region. A concentration dependence is visible only at very large solid fractions where
the movement of particles is so restricted that they are only infrequently able to
move past their neighbours. Under these conditions, one expects the mean free path
to drop more rapidly than 1/v, so that the dimensionless conductivity goes to zero.
(This is analogous to the density correction in the Van der Waals equation of state.)
In much the same way as for the conductivity, the apparent viscosity u for each
particle size, solid fraction and material can also be fitted by a least squares method
into the form
p=p,+b,U/H. (6.3)
Here, all the data extrapolate back to a non-zero value at zero shear rate for exactly
the same reasons as described above for k,, although the value of u, is generally small

compared to that of x, while the value of &, is often comparable to that of k. By
considering (1.1), a reasonable scaling of the viscosity is

F—l

o D3(U/H)

This dimensionless group is plotted in figure 9(b). As might be expected from the
preceding discussion, these data asymptote towards infinity at the larger values of
the solid fraction. The asymptote represents the maximum concentration beyond

which the material can no longer exhibit fluid-like behaviour and, like a solid, will
exhibit an infinite viscosity.

(5.4)
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Ficure 10. Apparent Prandtl number, Pr = (u—u,)c,/(k—k,), as a function of solid
fraction v. Symbols as figure 8.

The ratio of the dimensionless groups given by (5.4) and (5.2) yields the apparent
Prandtl number for the shearing mixture:

Pr= fﬂ% (5.5)
0

Remember that the molecular and turbulent Prandtl numbers reflect the differences
in the internal transport of heat and momentum. To make a direct analogy, this
particular form of the Prandtl number given in (5.5) was chosen as, by subtracting
away the zero intercepts, g, and k,, it reflects the differences in the shear-induced
transport of heat and momentum that are the major topic of this paper. This Prandtl
number is plotted in figure 10 and can be seen to be a well-defined function of the
solid fraction v. This indicates that the shear-induced transport rates of heat and
momentum are related through the solid concentration and a single material
property, the specific heat of the solid phase, c,. Remember that the majority of the
heat is carried by particles, in the streaming mode, as they follow their random paths
through the bulk material. Thus, the heat transport rate is proportional to the heat
capacity of the particles which is equal to the mass of the particle multiplied by its
specific heat c,, while the momentum transport is carried by the inertia of the
particles and is therefore proportional only to the particle mass. Consequently, the
dependence on mass disappears when taking the ratio that forms the Prandtl
number, and leaves the specific heat as the sole remaining material property. The
dependence on the solid concentration » reflects the fact that while both collisional
and streaming modes contribute to the overall momentum transfer, only the
streaming mode is important in the heat transfer process.
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One of the reviewers asked about the effects of the annular flow configuration on
the results. The results are interpreted as if they come from an infinite shear flow yet
may be dominated by a variety of undesirable ramifications of approximating the
infinite flow field by a rotational system. Two possibilities were suggested. The first
was simple centrifugal forces, which, if comparable to the dispersive forces generated
within the material, may alter the distribution of the granular material within the
channel. A more complicated problem arises from the secondary flows characteristic
of the annular configuration that were reported by Savage & Sayed (1984). These are
generated because, near the stationary wall, the particles will also be nearly
stationary and thus experience no centrifugal forces, while, near the rotating wall,
the particles will have maximum velocity and maximum centrifugal forces. Assuming
that the flowing granular material behaves approximately as a fluid, this would make
the pressure near the inner wall a maximum near the upper surface and a minimum
near the bottom. This results in a vortical motion in the shear gap generated
primarily by the pressure gradient at the inner wall between the top and bottom of
the channel. While it is possible to evaluate the relative magnitude of the centrifugal
forces to the dispersive stresses, the effect on the results cannot be easily quantified ;
i.e. are these second-order effects that can be simply ignored? At the same time,
neither the velocity, nor (to an even greater extent) the contribution of the vortical
motions have been quantifiably evaluated; one would expect that these would make
a significant contribution to the transport properties only if the induced velocities
were of the same order as the granular temperature. Without any quantitative
prediction of their significance, one can only appeal to the results. In the first case,
any error depends on the relative magnitude of the dispersive to centrifugal forces.
But the dispersive stresses vary as the square of the particle size, while the
centrifugal forces are independent of particle size. Thus, one would expect that the
larger the particle size, the smaller the significance of either problem. In the second
case, the error will be proportional to the relative magnitude of the induced vortical
motions and the square root of the granular temperature. Again, the induced motion
depends on the pressure field and should be independent of particle size while the
square root of the granular temperature varies proportionally to the particle size.
Yet the scaled results plotted in figure 9 show no effect of particle size. Thus, one can
infer that both effects are insignificant.

6. Conclusions

This paper has described measurements of the apparent thermal conductivity for
a dry granular flow undergoing shear in an annular shear cell device. The results show
that the bulk shear motion improves the internal transport of both heat and
momentum and that both transport coefficients increase linearly with the imposed
shear rate, indicating that similar internal mechanisms drive both transport
processes. As the granular temperature varies as the square of the shear rate, the
above results imply that both the conductivity and the viscosity enhancements are
proportional to the square root of the granular temperature in much the same way
as the kinetic theory of gases predicts that the viscosity and conductivity of a perfect
gas are proportional to the square root of the thermodynamic temperature. This is
a further indication that the granular temperature governs the internal transport
processes in rapidly shearing granular flows and fulfils much the same role as the
thermodynamic temperature in a gas.

However, there are differences in the internal mechanisms that lead to the
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transport of heat and momentum. Momentum is transported both by particle
collisions and by the random motion of particles through the bulk material.
However, as heat transfer is a slow process, little heat can be conducted during the
short duration of a collision and there is no analogue of the collisional mode for the
heat transport. Consequently, at large particle concentrations, when the particles
have limited free range of motion, there is almost no shear-induced enhancement of
thermal conductivity. At the same time, the viscosity, working in the collisional
mode, asymptotically approaches infinity as the solid concentration approaches the
maximum value that can support a shear flow.

By comparing the results of tests on particles of various sizes and thermal
properties, it was demonstrated that the thermal conductivity varies as:

U
k—k0=ppchf,g(V)E, (7.1)

where g(v) is some function of the solid fraction v. This provides the heat-transfer
analogue to the famous prescription of Bagnold (1954) for the apparent viscosity :

U
r=te = PoDrfV) 5. (7.2)

where f(v) is another function of v. Finally, we showed that the apparent Prandtl
number for the shearing material is a function only of the solid fraction, further
cementing the relationship between these two fundamental transport properties.
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